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SUMMARY

Recent studies have demonstrated direct reprog-
ramming of fibroblasts into a range of somatic cell
types, but to date stem or progenitor cells have
only been reprogrammed for the blood and neuronal
lineages. We previously reported generation of
induced hepatocyte-like (iHep) cells by transduction
of Gata4, Hnf1a, and Foxa3 in p19 Arf null mouse
embryonic fibroblasts (MEFs). Here, we show that
Hnf1b and Foxa3, liver organogenesis transcription
factors, are sufficient to reprogram MEFs into
induced hepatic stem cells (iHepSCs). iHepSCs can
be stably expanded in vitro and possess the potential
of bidirectional differentiation into both hepatocytic
and cholangiocytic lineages. In the injured liver of
fumarylacetoacetate hydrolase (Fah)-deficient mice,
repopulating iHepSCs become hepatocyte-like cells.
They also engraft as cholangiocytes into bile ducts of
mice with DDC-induced bile ductular injury. Lineage
conversion into bipotential expandable iHepSCs
provides a strategy to enable efficient derivation of
both hepatocytes and cholangiocytes for use in
disease modeling and tissue engineering.

INTRODUCTION

Transcription factors are well known to modulate cell fate. It was

first reported that MyoD, a critical transcription factor for speci-
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fication of the skeletal muscle lineage during early development,

could induce muscle-specific properties in fibroblasts (Davis

et al., 1987). After the recent discovery that fibroblasts were

reprogrammed into induced pluripotent stem cells (iPSCs) by

defined transcription factors (Takahashi and Yamanaka, 2006),

other particular sets of transcription factors were found for their

capacities to induce several specific somatic cell phenotypes,

such as hematopoietic cells (Laiosa et al., 2006; Feng et al.,

2008), neuronal cells (Vierbuchen et al., 2010; Pang et al.,

2011; Caiazzo et al., 2011; Pfisterer et al., 2011; Son

et al., 2011; Liu et al., 2012), cardiomyocytes (Ieda et al., 2010;

Efe et al., 2011), and hepatocytes (Huang et al., 2011; Sekiya

and Suzuki, 2011). The direct induction of particular somatic

cells from other somatic lineages enabled more efficiency and

safety when compared with the early methods of staged differ-

entiations starting from pluripotent stem cells, either embryonic

stem cells (ESCs) or iPSCs.

Our recent study, as well as the work of others, indicated that

mouse fibroblasts could be reprogrammed directly into induced

hepatocyte-like (iHep) cells (Huang et al., 2011; Sekiya and

Suzuki, 2011). iHep cells were obtained through enforced

expression of three defined factors, Gata4, Hnf1a, and Foxa3,

with controlling the senescence pathway by p19 knockdown or

knockout (Huang et al., 2011) or that of two defined factors

comprising Hnf4a plus Foxa1, Foxa2, or Foxa3 (Sekiya and

Suzuki, 2011). In the meanwhile, we were interested in deriving

several other types of liver cells, including cholangiocytes and

hepatic stem cells (HepSCs), because the liver is composed of

various cell types and a spectrum of liver cells will be required

for both cell replacement therapies and constructing liver tissues

by bioengineering. The direct induction of HepSCs caters to our
nc.
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strategy of obtaining both hepatocytes and cholangiocytes.

HepSCs in both embryonic and adult livers were known to

be capable of self-renewal as well as differentiation into both

hepatocytes and cholangiocytes. HepSCs participated in both

embryonic liver organogenesis (Nejak-Bowen and Monga,

2008) and the maintenance of liver tissue homeostasis after

chronic injuries (Ishikawa et al., 2012) and were used as donor

cells for liver transplantation therapy (Wang et al., 2003b; Oertel

et al., 2008). The successful induction of HepSCs will facilitate

the study on the mechanism of hepatic transdifferentiation and

the derivation of other endodermal cell types, such as insulin-

secreting pancreatic beta cells for diabetic patients. Most

recently, new findings about induction of tissue-specific stem

cells directly from fibroblasts, including blood progenitor cells

(Szabo et al., 2010) and neural stem cells (Kim et al., 2011; Lujan

et al., 2012; Han et al., 2012; Thier et al., 2012; Ring et al., 2012),

were reported. The new strategies in these studies were to

directly reprogram fibroblasts into the desired tissue-specific

stem cells through the adjustments of culture conditions suitable

for the stem cells during the reprogramming process (Kim et al.,

2011), aswell as throughmodulation of defined transcription fac-

tors under specific growth conditions (Szabo et al., 2010; Lujan

et al., 2012; Han et al., 2012; Thier et al., 2012; Ring et al., 2012).

Here, we report that the induced hepatic stem cells (iHepSCs)

can be directly induced from mouse embryonic fibroblasts

(MEFs) by overexpressing two key transcription factors, Hnf1b

and Foxa3, which were originally identified during liver organo-

genesis (Coffinier et al., 2002; Lokmane et al., 2008; Le Lay

and Kaestner, 2010). We prove that the derived iHepSCs, similar

to hepatic stem cells, possess the capacities of both self-

renewal and bipotency of differentiation into both hepatocytes

and cholangiocytes under in vitro and in vivo conditions.

iHepSCs are stable and expandable, which holds great promise

for cell replacement therapy and liver tissue engineering.

RESULTS

Directly Inducing MEFs into iHepSCs by Hnf1b

and Foxa3

Our procedure from initial transcription factor screening to

in vitro and in vivo characterization of iHepSCs is summarized

in a diagram (Figure 1A). A total of 20 candidate factors, which

were known to have critical roles either for embryonic liver organ-

ogenesis (Zaret and Grompe, 2008; Le Lay and Kaestner, 2010;

Zaret, 2008) or for activation of oval cells in adult mouse livers

(Jakubowski et al., 2005), were selected to test their potential

capacity for inducing iHepSCs from MEFs (Table S1 available

online). Similar with previous reports (Zaret, 2008; Okabe et al.,

2009), expression of markers for hepatic stem cells, including

EpCAM, alpha-fetoprotein (Afp), albumin (Alb), and transthyretin

(Ttr), was used to determine the phenotype of iHepSCs. Candi-

date factors were cotransfected intoMEFs to determine themin-

imum factors required to convert MEFs into iHepSCs. Among all

factors screened, Hnf1b and Foxa3 were proven to be sufficient

for this conversion. The screening results are summarized in

Figures S1A–S1C.

Epithelial cell clusters that emerged from theMEFswere found

at 15 days after transfection with both Hnf1b and Foxa3 at a

frequency of morphological conversion of 0.4% ± 0.082%
Cell S
(Figure 1B and Figure S1D), whereas no such conversion

appeared with an eGFP-control lentivirus (data not shown).

Newly induced epithelial cells were enriched and collected for

analysis. Converted cells had the typical morphological pheno-

types of epithelial cells (Figures 1C and 1D). RT-PCR analysis

revealed that these converted epithelial cells expressed markers

of hepatocytes (Alb, Ttr, and Hnf4a), of cholangiocytes (CK19),

and of both hepatocytes and cholangiocytes (CK8 and CK18)

(Figure 1E). In addition, the converted epithelial cells also

expressed markers of hepatic stem cells (Afp, Sox9, EpCAM,

and Dlk1) (Figure 1E). In contrast, they did not express the genes

of mature hepatocytes in adult liver (G6p, Tat, Cyp3a11, and

Cyp7a1) (Figure 1E). Thus, these cells were further characterized

to test whether they are iHepSCs by using several assays in vitro

and in vivo.

We proved that the possibility of contamination of cells from

other early enteric organ systems was excluded. Head and

visceral tissues in the embryos were completely removed during

tissue harvesting. Especially, we confirmed that both MEFs

and MEF-derived iHepSCs did not express pancreatic lineage

markers (Pdx1, Ins1,Amylase, andGlucagon) or intestinal lineage

cell markers (Secretin, Cdx1, Lysozyme, and Chromogramin A)

(Figure S1E). Therefore, iHepSCs were only converted from

fibroblasts but not from the embryonic cells of any other organs

such as the pancreas and intestine.

Additionally, we also used tail tip fibroblasts (TTFs) of adult

mice to induce iHepSCs under the same conditions. Fifteen

days after transfection with Hnf1b and Foxa3, the epithelial

clones, morphologically similar as MEF-derived iHepSCs, were

observed in the TTF culture (Figure S1F). Similar to MEF-derived

iHepSCs, the TTF-derived epithelial cells expressed hepatic and

biliary markers (Alb, Ttr, Afp, CK8, and CK18) and some hepatic

stem cell markers (Dlk1 and EpCAM) (Figure S1F). However, the

TTF-derived iHepSCs showed proliferation arrest and cell death

after three to four rounds of passages (Figure S1F).

Converted Epithelial Cells Possessed the Basic
Characteristics of Hepatic Stem Cells
Ten single-cell clones (clones from 1 to 10) were selected from

the pool of two-factor converted epithelial cells for additional

investigation of hepatic stem cell properties in vitro. Overall,

the converted epithelial cells of these selected colonies showed

similar mRNA expression pattern (Table S2). In parallel analyses,

cells of clones 2 and 6 were studied for general features of

hepatic stem cells and bipotential hepatic differentiation. First,

self-renewal capacity was evaluated. The iHepSCs displayed a

typical S-shaped growth curve and the mean population

doubling time was approximately 20 hr, while the doubling

time of MEFs (passage 4) was 36 hr (Figures 1F and 1G). There

was little difference in doubling time or shape of growth curve

at passage 10 and passage 30, suggesting that iHepSCs

retained stable self-renewal capacity after multiple cell divisions

in vitro. Second, cells of two selected colonies kept normal

diploid nuclear DNA levels on fluorescence-activated cell sorting

analysis (Figure S2A). Furthermore, iHepSCs in clone 2 and clone

6 kept normal karyotypes up to passage 32 (Figure S2C).

The converted epithelial cells were positive for E-cadherin

(Figure 2A) and negative for a-SMA (data not shown), which

proves that they completed mesenchymal-epithelial transition
tem Cell 13, 328–340, September 5, 2013 ª2013 Elsevier Inc. 329



Figure 1. Conversion of MEFs into iHepSCs by Hnf1b and Foxa3

(A) Schema of the experimental procedures including direct induction of iHepSCs by defined factors, in vitro differentiations, and in vivo cell transplantation

assays.

(B) Representative epithelial clone emerged from the MEFs at 15 days postinfection with Hnf1b and Foxa3 (passage 1).

(C and D) The same epithelial clone shown after expansion (passage 2) (C), and the outlined area in (C) was magnified to show converted morphology of epithelial

cells in the clone (D).

(E) RT-PCR results for detection of hepatic gene expressions in the converted epithelial cells, adult liver cells, fetal liver cells, and MEFs were used as controls.

(F and G) Growth curves (F) and cell doubling times (G) for two iHepSC clones, iHepSC-2 and iHepSC-6 (both passage of 10 and passage of 30), in comparison

with MEFs (passage 4). Data represent mean ± SD (n = 3). P, passage number; D, days after passage of cells. Scale bar represents 100 mm.

See also Figure S1 and Table S1.
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(MET) from fibroblasts. Similar to previously reported hepatic

stem cells, the iHepSCs expressed markers of embryonic

hepatic progenitors (Alb, Afp, and CK19) (Figures 2D and 2E)

and markers of hepatic stem cells (EpCAM, Pan-CK, Sox9,

and Lgr5) (Figures 2B, 2C, 2F, and 2G) (Furuyama et al., 2011;

Huch, et al., 2013). Ultrastructural analysis was performed with

electron microscopy, which showed that the iHepSCs had a

high nuclear-to-cytoplasm ratio and few cytoplasmic organelles,

which are characteristics of stem cells (Figure S2B). These

results suggested that the converted epithelial cells possessed

the general features of hepatic stem cells.

To further evaluate the overall reprogramming status of the

converted epithelial cells, their global gene expression profiles

were compared with those of several other types of cells,

including: (1) liver epithelial progenitor cells (LEPCs), defined

hepatic stem cells from our previous study (Li et al., 2006); (2)

our previously reported induced adult hepatocyte-like (iHep)

cells (Huang et al., 2011); (3) primary adult hepatocytes prepared

from mouse liver; and (4) MEFs as the control of original cells

before induction of cell conversion. The induced cells clustered

closely with LEPCs but separated from MEFs, iHep cells, and

mature hepatocytes (Figure 2H). Indeed, the gene expression

patterns of induced cells were similar with LEPCs in gene

categories of liver development, stem cell signal pathways, fat

metabolic pathways, and glucosemetabolic pathways, although

there were some minor differences in gene expression profiles

between iHepSCs and LEPCs (Figure S2D). Furthermore, we

compared the global gene expression of iHepSCs with three

recently published adult liver stem or progenitor cells (Shin

et al., 2011; Dorrell et al., 2011; Huch et al., 2013). iHepSCs

were most similar to sorted M+133+26� liver progenitor cells

and Foxl1+ liver progenitor cells and to a lesser extent to Lgr5+

liver stem cells, indicating that the iHepSCs bear true similarity

to naturally existing liver stem or progenitor cells (Figure S2E).

All together, these results suggested that the induced epithelial

cells had significant similarity with adult liver stem cells but

were different thanmature hepatocytes andMEFs. These results

strongly supported the conclusion that Hnf1b and Foxa3 were

able to induce MEFs into iHepSCs.

The Bipotency of iHepSCs Differentiated into Both
Hepatocytes and Cholangiocytes
We next investigated whether the iHepSCs possessed the bipo-

tency of hepatic stem cells to differentiate into both hepatocytic

and cholangiocytic lineages in vitro. To prove that iHepSCs

could be induced for hepatocytic differentiation, we plated the

iHepSCs on Matrigel in hepatic differentiation medium (HDM)

with oncostatin M (OSM) and epidermal growth factor (EGF).

After 24 hr, the plated cells formed aggregates on the surface

of the Matrigel. The aggregates had smooth edges and reached

up to approximately 100 mm in diameter in size by day 6 after

plating (Figure 3A). Beyond 6 days after plating, the rate of pro-

liferation of the cell aggregates gradually slowed down and

stopped at around 12 days. Several assays were performed to

prove that the differentiated cells from iHepSCs in the aggre-

gates became mature hepatocytes. PAS staining of frozen sec-

tions of the iHepSCs-derived cells showed significant glycogen

storage as mature hepatic cells (Figure 3B). Similarly, chiquoine

staining indicated glucose-6-phosphatase (G6P) activity (Fig-
Cell S
ure 3C). The efficiency of hepatic differentiation was determined

by quantifying the percentage of albumin-positive and CK19-

negative cells in the aggregates. The rate of differentiation into

hepatocyte-like cells of iHepSCs was 56.4% ± 14.7% (Figures

3D–3F). RT-PCR analysis revealed robust upregulation ofmature

hepatocyte-specific transcripts (Alb,Hnf4a, Aat,Gjb1,Cyp3a11,

Cyp7a1, and G6p) in the cells at 12 days after hepatic differenti-

ation. Meanwhile, the markers of cholangiocytes (gamma-

glutamyl transpeptidase, Ggt) and of fetal liver progenitor cells

(Dlk1) were not detectable in the same cells (Figure 3I). Addition-

ally, ultrastructural analysis with electron microscopy showed

typical hepatocytic organelles such asmitochondria, lysosomes,

and glycogen granules (Figures 3G and 3H). Furthermore, many

bile canaliculi were observed in the intercellular space of

adjacent cells (Figure 3H). Using ELISA, we found significant

Alb secretion into the medium by the induced cell aggregates

(Figure 3J, p < 0.05). All together, these results clearly indicated

that iHepSCs could differentiate into hepatocyte-like cells.

When iHepSCs were cultured in a three-dimensional (3D) type

I collagen gel culture system (Li et al., 2010), they differentiated

into cholangiocyte-like cells with representative branching struc-

tures and expressed cholangiocyte marker CK19 after 9 days of

induction (Figure 4A). Many iHepSC-derived cells in the branch-

ing structures showed alkaline phosphatase activity, indicating

a functional phosphatase specifically expressed in iHepSC-

derived cholangiocyte-like cells (Figure 4B). Ultrastructural anal-

ysis with electron microscopy showed basement membrane on

one side and microvilli on the opposite side in the induced cells,

which are typical features of cholangiocytes (Figures 4D and 4E).

Additionally, we compared the gene expression profiles between

iHepSC-derived cholangiocytes and primary cholangiocytes

(Shin et al., 2011). The gene expression profiles of iHepSC-

derived cholangiocytes clustered with that of primary cholangio-

cytes, indicating successful cholangiocytic differentiation of

iHepSCs in vitro (Figure 4C). To further evaluate the function of

iHepSC-derived cholangiocytes, we induced iHepSCs to form

cysts in the 3D culture system containing 1.2 mg/ml type I

collagen and 40% Matrigel (Tanimizu et al., 2007). About 10%

of iHepSCs-derived cells were found in round cysts ofmonolayer

of cells after 7 days of induction (Figure 4F), while the other

iHepSC-derived cells formed branching structures. The iHepSC-

derived cholangiocyte-like cells in cysts expressed the two con-

ventional cholangiocyte markers, CK19 (Figures 4I and 4K) and

CK7 (Figures 4L and 4N). The induced cholangiocyte-like cells

in cysts showed apicobasal polarity as with primary cholangio-

cytes. They had F-actin localized to the inner layer of the lumen

(Figures 4J, 4K, 4M, and 4N). Remarkably, the cholangiocyte-like

cells in cysts showed secretory function as primary cholangio-

cytes. The cholangiocyte-like cells in cysts transported Rhoda-

mine 123 into the cyst lumen (Figure 4G). Their transport function

was blocked in the presence of the MDR inhibitor Verapamil

(Figure 4H). Collectively, these findings supported that iHepSCs

had differentiated into cholaniocyte-like cells.

iHepSCs Differentiated into Both Hepatocytes
and Cholangiocytes In Vivo
Fumarylacetoacetate hydrolase-deficient (Fah�/�) mice defec-

tive in tyrosine metabolism require a supply of 2-(2-nitro-

4-trifluoromethylbenzoyl)-1, 3-cyclohexanedione (NTBC) for
tem Cell 13, 328–340, September 5, 2013 ª2013 Elsevier Inc. 331
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survival. If NTBC is withdrawn, they undergo liver failure and

death. Fah�/� mice can be rescued by transplantation of wild-

type hepatocytes after NTBC withdrawal (Grompe et al., 1993;

Overturf et al., 1996; Wang et al., 2003a), representing a robust

model to characterize in vivo repopulation. Here, Fah�/� mice

were used to prove the in vivo differentiation of functional hepa-

tocytes from iHepSCs. We intrasplenically injected iHepSCs into

Fah�/� mice, while wild-type hepatocytes and MEFs were used

as the controls. All six of Fah�/� mice transplanted with MEFs

died within 6 weeks. In contrast, four out of 11 Fah�/� mice

transplanted with iHepSCs survived 8 weeks without NTBC

(Figure 5A). Analysis of liver samples from these recipients indi-

cated that Fah-positive cells derived from iHepSCs comprised

11.6% ± 3.6% (7.9% to 16.2%) of total hepatocytes in liver of

Fah�/� mice (Figure 5B). This level of liver repopulation was

similar to that in Fah�/� mice transplanted with hepatic progen-

itor cells (Li et al., 2010; He et al., 2010, 2012). Morphologically,

Fah-positive nodules showed normal liver sinusoid structures.

Some Fah-positive hepatocytes were binucleated, similar to

wild-type hepatocytes (Figure 5C). In contrast, recipients trans-

planted with MEFs had no repopulation from Fah-positive

hepatocytes. Analysis of liver samples revealed that all of

the endogenous hepatocytes were Fah negative with disrupted

cellular structures (data not shown). Remarkably, repopulated

Fah-positive hepatocytes from iHepSCs were also found to

express Alb by immunofluorescence (Figure 5D). Repopulating

Fah-positive cells were harvested by laser-capture microdis-

section and were found to have gene expression patterns that

were the same as those of host hepatocytes but different

than those of iHepSCs without differentiation (Figures S3A

and S3B). Moreover, Fah�/� mice transplanted with iHepSCs

had restoration of liver function, as evidenced by a significantly

corrected level of serum albumin when compared with controls.

Recipients of iHepSCs also had lower levels of aspartate

aminotransferase (AST), alanine transaminase (ALT), and total

bilirubin compared with controls, indicating that transplantation

of iHepSCs attenuated liver injury (Figure 5E). Together, these

results demonstrated that iHepSC-derived hepatocytes were

able to engraft into the liver of Fah�/� mice as normal

hepatocytes.

The 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC)-fed

mouse is a well-known model for liver progenitor cell (oval

cell) activation and bile ductular proliferation (Preisegger et al.,

1999). In vivo DDC treatment induces oval cells to sponta-

neously differentiate into cholangiocytes (Preisegger et al.,

1999; Sackett, et al., 2009; Thompson et al., 2010). We used

DDC-fed mice to determine whether iHepSCs possess the abil-

ity to engraft into bile ducts and further differentiate into cholan-

giocytes in vivo. After transfection with eGFP-expressing lenti-

virus, 1 3 106 iHepSCs were transplanted into 15 DDC-

treated mice. eGFP-positive cells were found scattered within

large bile ducts in the livers of four recipient mice 3 weeks post-
Figure 2. Characterizations of iHepSCs

(A–C) The expressions of E-Cadherin (A), EpCAM (B), and Pan-CK (C) in iHepSC

(D and E) The coexpression of Alb and CK19 (D) and Afp and CK19 (E) in the iHe

(F and G) The expression of Sox9 (F) and Lgr5 (G) in an expanding clone of iHep

(H) Hierarchial clustering analysis of global gene expression profiles to compare

See also Figure S2 and Table S2.

Cell S
transplantation and comprised 1.44% ± 0.41% of total biliary

epithelial cells (Figures 6A and 6B). eGFP-positive cells ex-

pressed CK19, EpCAM, and CK7, markers of biliary epithelial

cells (Figure 6C, 6D, and 6E). In addition, eGFP-positive cells

also expressed Osta (Figure 6F), which is a major bile acid

and steroid transporter and is a functional marker of cholangio-

cytes (Ballatori et al., 2005). Furthermore, a second cell marker

was used to identify transplanted cells. After iHepSCs were

transfected with LacZ-expressing lentivirus, LacZ-positive cells

were also found to be scattered within large bile ducts in the

liver of recipient mice 3 weeks posttransplantation (Figures

S4A, S4B, and S4D). The LacZ-positive cells costained with

CK19, further confirming that iHepSCs could differentiate into

cholangiocytes in vivo (Figures S4C, S4E, and S4F). Impor-

tantly, the possibility of cell fusion between iHepSC-derived

cells and cells of host liver was excluded by using a floxed-

lacZ reporter mouse model that allowed lacZ gene to express

only in the fused cells (Figures S4G–S4I). Collectively, these

results demonstrated that iHepSCs had the capacity to differen-

tiate into cholangiocytes in the liver of DDC-treated mice after

transplantation.

It is worth mentioning that there were no tumors in any of

the recipients, including Fah�/� mice and DDC-treated mice. In

addition, there were no tumors in six NOD/SCID mice subcuta-

neously transplanted with 1 3 106 iHepSCs during a 12-week

time frame (Figure S4J). These data indicate that iHepSCs

were not contaminated with potentially tumorigenic cells. How-

ever, the longer-term risk of tumorigenesis will be examined in

our future experiments.

DISCUSSION

iHepSCs would be a useful cell type for autologous cell therapy

and liver tissue engineering. They would also be useful to model

hepatic stem cells in drug discovery and in the analysis of the

pathogenesis of human liver diseases. In comparison to previous

methods of staged differentiation to derive tissue-specific

somatic cells from ESCs or iPSCs, the direct induction methods

described here have advantages in saving time and materials.

These methods eliminate the possibility of contaminating cells

types such as ESCs or iPSCs, which eliminates the possibility

of teratoma formation. Studies on the direct induction of tis-

sue-specific stem cells would also be helpful in understanding

the mechanisms for differentiation of tissue-specific stem cells.

To our knowledge, generation of iHepSCs is the first description

of direct induction of hepatic stem cells.

Our success in generating iHepSCs was the result of using

both the modulation on the expression of Hnf1b and Foxa3

plus the adjustments of culturing conditions during induction

and selection procedures. The cell culture conditions used for

direct induction of iHepSCs, including medium selection and

cell passage, were designed to be suitable for hepatic stem
s were recognized by assay of immunostaining.

pSCs was found by immunostaining.

SCs was found by immunostaining.

iHepSCs with other relative cells. Scale bar represents 100 mm.
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Figure 3. iHepSCs Differentiated into Mature Hepatocytes In Vitro

(A) Representative aggregates formed by iHepSCs after hepatic differentiation.

(B and C) Glycogen storage (B) and Glucose-6-phosphatase (G6p) activity (C) found in iHepSC-derived hepatic cells by assay of PAS staining and chiquoine

staining, respectively.

(D–F) iHepSC-derived hepatic cells lost the expression of cholangiocyte marker CK19 (E) and only expressed Alb (D). (F) merged picture of (D) and (E).

(G and H) Ultrastructure of iHepSC-derived hepatic cells showed the morphological features of mature hepatocytes, including well-developed organelles and

intercellular canaliculi. Arrowheads and arrows in (G) indicate lysosomes and mitochondria, respectively. Arrowheads and arrows in (H) indicate sites of tight

junctions and glycogen granules, respectively.

(I) The comparisons among iHepSC-derived hepatic cells (iHepSC-Heps), iHepSCs, and primary hepatocytes for the expressions of representative genes relative

to both hepatocytes and cholangiocytes by RT-PCR analysis.

(J) ELISA showed the significant levels of secretory Alb by iHepSC-Hep, and the data were represented as mean ± SD (n = 3; *p < 0.05, LSD t test). Scale bar

represents 100 mm in (A)–(D) and 1 mm (E) and (F).
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cell cultures based on previous reports (Tanimizu et al., 2004; Li

et al., 2010), which were different from the culture conditions that

we used for direct induction of iHep cells (Huang et al., 2011).

How transcription factors coordinate with environmental condi-

tions to induce iHepSCs is an area of active investigation. A total
334 Cell Stem Cell 13, 328–340, September 5, 2013 ª2013 Elsevier I
of 20 candidate factors were selected for our screen based on

their roles during hepatic differentiation and liver organogenesis.

We found that both Foxa3 and Hnf1b were necessary for the in-

duction of iHepSCs. Foxa3was known as one of the defined fac-

tors for induction of iHep cells, which are a close relative to
nc.



Figure 4. iHepSCs Differentiated into Cholangiocyte In Vitro

(A) CK19 immunostaining on the representative branching structures formed by the iHepSC-derived cells cultured in the 3D collagen type-1 gel.

(B) Staining for alkaline phosphase activity in the iHepSC-derived cells that formed branching structures (purplish red).

(C) Hierarchical clustering heatmap of 17,746 genes from Primary Cholangocytes (P-Ch-1 and P-Ch-2), iHepSC-derived cholangiocytes (iHepSC-2-Ch and

iHepSC-6-Ch), and iHepSCs (iHepSC-2 and iHepSC-6). iHepSC-derived cholangiocytes clustered with primary cholangiocytes.

(D and E) Ultrastructure of basement membrane (arrow) and microvilli (arrowhead) of iHepSC-derived cells for detection of cholangiocytic differentiation.

(E) Magnification of the outlined area in (D) showed the details of basement membrane (arrow) with typical feature of cholangiocytes.

(F) Morphology of the iHepSC-derived ductal cysts formed in a 3D culture system.

(G) Transport of rhodamine 123 (Rho-123) into the central lumen of a cyst.

(H) The MDR inhibitor verapamil (Ver) blocks rhodamine 123 transport.

(I–K) Coimmunofluorescence staining for CK19 (I) and F-actin (J). (K) shows a merged picture of (I) and (J).

(L–N) Coimmunofluorescence staining for CK7 (L) and F-actin (M). (N) shows a merged picture of (L) and (M). Scale bar represents 100 mm in (A), (B), and (F)–(N)

and 1 mm in (D) and (E).
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Figure 5. Engraftment of iHepSCs into the Liver Parenchyma and In Vivo Differentiation into Hepatocytes

(A) Kaplan-Meier survival curves of hepatocyte-transplanted Fah�/� mice (n = 6), iHepSCs-transplanted Fah�/� mice (n = 11), and MEFs-transplanted Fah�/�

mice (n = 6) after NTBC withdrawal. Log rank test revealed differences between the curves for iHepSCs and MEFs (p < 0.05) and iHepSCs and hepatocytes

(p < 0.05).

(B) Fah staining of repopulated iHepSCs nodules in liver sections.

(C) Histological analyses showed that the engrafted hepatocytes in livers of Fah�/�mice were positive for Fah protein expression and showed normal hepatocyte

morphology in H&E staining. Arrows indicate binucleated hepatocytes.

(D) The repopulation nodules of iHepSC-derived hepatocytes in livers of Fah�/� mice recipients coexpressed Alb and Fah by immunofluoresence staining.

(E) Biochemical analysis of metabolic function of Fah�/� recipients. The levels of ALT, AST, ALB, and total bilirubin in WT mice (n = 4), Fah�/� recipients

repopulated by iHepSC-derived hepatocytes (n = 4), and Fah�/� mice transplanted with MEFs (n = 4) are shown. The data are represented as means ± SD.

*p < 0.05, LSD t test. Scale bar represents 100 mm.

See also Figure S3.
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iHepSCs in the hepatic lineage. Hnf1b, in contrast, is unique to

iHepSC derivation, and we speculate that it has a critical role

in the induction of iHepSCs. Previously, Hnf1b was known to

be required for hepatic specification of ventral endoderm and

for both inducing and maintaining expression of some early he-

patic transcriptional factors during liver development (Coffinier

et al., 2002; Lokmane et al., 2008). Our results support a role

forHnf1b in directing cells reprogramming toward an early devel-

opmental stage. In addition,Hnf1b has been shown to be essen-
336 Cell Stem Cell 13, 328–340, September 5, 2013 ª2013 Elsevier I
tial for formation of functional bile duct system during embryo-

genesis (Coffinier et al., 2002; Lokmane et al., 2008).

Furthermore, Hnf1b is strongly expressed throughout the biliary

system and in periportal hepatocytes in adults (Coffinier et al.,

2002). Thus, we speculate that Hnf1b might adjust the reprog-

ramming direction to an earlier developmental stage that enables

cholangiocyte differentiation. The results from cDNA microarray

support this hypothesis because the global gene expression

profiles of iHepSCs clustered with those of our previously
nc.



Figure 6. Engraftment of iHepSCs into the

Bile Ducts and In Vivo Differentiation into

Cholangiocytes

(A) Discontinuous distribution of iHepSC-derived

cells labeled by eGFP in the large bile ducts of livers

in DDC-treated mice after transplantation.

(B) Nuclei in (A) were counterstained with DAPI.

(C) The eGFP-positive iHepSC-derived cells found

in large bile ducts expressed cholangiocyte marker

CK19 by immunofluoresence staining.

(D and E) The eGFP-positive iHepSC-derived cells

found in large bile ducts expressed cholangiocyte

marker EpCAM (D) and CK7 (E) by immuno-

fluoresence staining.

(F) The eGFP-positive iHepSC-derived cells found

in large bile ducts expressed cholangiocyte

functional marker Osta expression by immuno-

fluoresence staining. Scale bar represents 100 mm.

See also Figure S4.
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reported liver progenitor cell lines (LEPCs) and with three

recently published adult liver stem or progenitor cells (Shin

et al., 2011; Dorrell et al., 2011; Huch et al., 2013) but were sepa-

rate from iHep cells, mature hepatocytes, and MEFs. The induc-

tion of iHepSCs is not successful if either Foxa3 or Hnf1b is left

out or if any of the culture conditions are changed. Interestingly,

Jun can be added to enhance this process but is not required for

the final induction results.

Besides using MEFs, we have also tested tail tip fibroblasts

(TTFs) of adult mouse for generation of iHepSCs under the

same conditions. Although the expected reprogramming

happened partially in TTF-derived cells, which showed iHepSC-

like morphology, the gene expression profiles did not reach that

of hepatic stem cells. In contrast toMEF-derived iHepSCs, these

TTF-derived cells were not able to expand in vitro. These results

suggest that some unidentified factors, other than our 20 candi-

dates, are required to achieve the complete conversion from

adult fibroblasts to iHepSCs. Indeed, MEFs have more plasticity

when compared with TTFs (Park et al., 2008; Pang et al., 2011).

On the other hand, our previous study for induction of iHep

cells indicated that blockage of liver cell senescence by using

p19 null micewas necessary to overcome the proliferative hurdle

of transdifferentiation (Huang et al., 2011). It is possible that TTFs

are more prone to undergo senescence than MEFs during

induction of iHepSCs, which might explain the proliferation
Cell Stem Cell 13, 328–340,
arrest that we observed with TTFs during

induction of iHepSCs. The modification of

other induction conditions, such as to use

small molecular inducers and to readjust

the reprogramming of cells at a common

intermediate stage (Kim et al., 2011) will

also be investigated in future work.

Up to now, there was no report of suc-

cessful in vivo bile duct cell repopulation

in bile duct structures. We tested iHepSCs

in several reported model systems

including mice with two-thirds partial hep-

atectomy (Oertel et al., 2008), retrorsine

treatment (Li et al., 2006), experimental
cholestasis using the a-naphthylisothiocyanate (ANIT)-based

diet (Moritoki et al., 2006), and DDC treatment (Wang et al.,

2003b). Among all of the tested models, donor iHepSC-derived

cells that were positive for CK19 expression were found only

in retrorsine and DDC-treated mice. However, only a few

iHepSC-derived cholangiocytes positive for CK19 expression

were found in retrorsine-treated mice, although a significant

number of iHepSC-derived hepatocytes could be found (data

not shown). In addition, iHepSC-derived cholangiocytes positive

for CK19 expression were not in duct structures. Theoretically,

retrorsine-treated mice are useful to assay for hepatocytes,

although small numbers of engrafted cholangiocytes derived

from transplanted fetal liver progenitor cells have been observed

(Shafritz and Dabeva, 2002). In contrast, the DDC-treated

mouse model was found to be very suitable for investigation of

engraftment into the bile ducts of iHepSC-derived cholangio-

cytes. Our results suggest that the DDC-treated mouse model

is ideal for transplantation assays of any stem cell-derived

cholangiocytes.

In summary, mouse embryonic fibroblasts were directly trans-

differentiated into induced liver stem cells (iHepSCs) by express-

ing Hnf1b and Foxa3. iHepSCs not only show morphologic

characteristics of liver stem cells but also possess many charac-

teristics of liver stem cells in self-renewal and gene expres-

sion profiles. More importantly, we prove that iHepSCs have
September 5, 2013 ª2013 Elsevier Inc. 337
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bidirectional differentiation potential to both hepatocytic and

cholangiocytic lineages in in vitro and in vivo studies.

EXPERIMENTAL PROCEDURES

Cell Culture and Generation of iHepSCs

MEFs (13 105, Passage 4) were seeded on gelatin-coated 35 mm dishes and

infected with lentivirus-expressing transcription factors the next day. After

3 days infection, the MEF medium was replaced by the HepSCs medium

(Dulbecco’s modified Eagle’s medium [DMEM]/F12 medium supplemented

with 10% fetal bovine serum [HyClone], 1% penicillin/streptomycin,

0.1 mmol/l 2-mercaptoethanol [both from GIBCO-BRL], 10 ng/ml HGF,

10 ng/ml EGF [both from R&D Systems], 1 3 insulin-transferrin-selenium

[ITS], 10�7 mol/l dexamethasone, 10 ng/ml nicotinamide, and 50 mg/ml genta-

micin [all from Sigma-Aldrich]) suitable for hepatic stem cell induction, mainte-

nance, and proliferation (Tanimizu et al., 2004; Li et al., 2010). Fifteen days

later, the cells were treated with 0.05% Trypsin/EDTA for 2 min to discard

the detached fibroblast cells and the remaining epithelial cells were enriched.

Then the induced epithelial cells (1 3 105) were plated on gelatin-coated

60 mm dish and were incubated in HepSCmedium for 8 days. Single epithelial

colonies were picked, expanded, and characterized by proliferation assays,

karyotype analysis, RT-PCR analysis, immunochemistry, and microarray anal-

ysis as given in the Supplemental Information.

In Vitro Differentiation

For the generation of hepatocytes, the method of iHepSC hepatic differentia-

tion was modified from our previous procedure (Li et al., 2006). Matrigel (BD

Biosciences) was poured into 6-well Ultra Low Cluster Plates (Corning Costar)

and thenwas placed at 37�C for 30min to form the gel. Cells of clone 2 or 6 (13

105) were suspended in hepatic differentiation medium (HDM) (DMEM/F12

medium supplemented with 10% fetal bovine serum [HyClone], 20 ng/ml

Oncostatin M, 20 ng/ml EGF [both from R&D], 10 ng/ml nicotinamide,

0.1 mmol/l L-Ascorbic acid and 10�7 mol/l dexamethasone [all from Sigma-

Aldrich]). The culture medium was changed every 2 days. After 12 days, the

induced cells were harvested from the top of matrigel gel by dispase and

then were used for RNA preparation, periodic acid Schiff (PAS) staining, chi-

quoine staining, and ultra structure analysis, as previously described in Huang

et al. (2011) and Li et al. (2006).

For the generation of cholangiocytes, three-dimensional culture system

using collagen type1 (BD) was used according to the manufacture’s instruc-

tion. In brief, 800 ml Collagen type1, 100 ml 103 PBS, 20 ml 1N NaOH, and

80 ml H2O were mixed on ice. This mixture was mixed with an equal volume

of 1 3 105 cloned iHepSCs suspended in cholangiocytic differentiation

medium (CDM) (DMEM/F12 medium supplemented with 10% fetal bovine

serum [HyClone], 20 ng/ml HGF [BD]). The cell suspension was transferred

into a 6-well plate and left at 37�C for 30 min. After the gel formed, the CDM

was gently added on to the gel.

Assay for Transport of Fluorescent Dye

iHepSCs were cultured in a chambered coverslip (Nalgene Nunc) to form cysts

in a 3D system consisting of 1.2 mg/ml collagen type 1 and 40% Matrigel for

7 days. The method to assess the transport of rhodamine 123 and inhibition

effect of R-(+)-verapamil was performed same as described previously in

Tanimizu et al. (2007).

Mice Breeding and Cell Transplantation

Fah�/� mice, Nod/SCID mice, and 129S4 mice were maintained according to

institutional guidelines. Fah�/� mice (8–10 weeks old) were maintained with

7.5 mg/l NTBC in the drinking water. For cell transplantation, 13 106 iHepSCs

were injected intrasplenically into the Fah�/� mice without NTBC. They were

sacrificed at 8 weeks after cell transplantation; the recipient livers were har-

vested and were fixed in 4% phosphate-buffered paraformaldehyde overnight

at 4�C. Five random serial sections from left, middle, and right liver lobes were

examined by IHC analysis to determine the donor cell repopulation.

DDC-treated mice were put on a diet containing 0.1% DDC (wt/wt) as pre-

viously described (Wang et al., 2003b). Three days after DDC diet treatment,

the mice were transplanted intrasplenically with 1 3 106 iHepSCs labeled
338 Cell Stem Cell 13, 328–340, September 5, 2013 ª2013 Elsevier I
with eGFP or LacZ by lentivirus and were kept on DDC diet. Mice recipients

were sacrificed 3 weeks after cell transplantation. Liver cryostat sections

(10 mm) were observed under a fluorescence microscope to detect the

eGFP-positive transplanted cells andwere examined with anti-CK19 antibody,

anti-CK7 antibody, anti-EpCAM antibody, and anti-Osta antibody by IHC for

cholangiocyte markers.
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